MATH 347 HW 8

due November 6, at the beginning of class

Homework Guildlines

Obviously, your solutions need to be complete and correct, but to receive full credit your write-up should also satisfy the following:

- All the important logical steps in the proof should be present and fully explained.
- All assumptions should be clearly identified.
- Your solutions should be clear and concise. If a sentence does not further the reader's understanding of the solution then it has no place in your write up.
- Use full and grammatically correct English sentences. Mathematical symbols should be used only to render complex mathematical relationships into a readable form.
Moreover, in order to obtain full credit for the homework, you must write down, in the very least, an attempt at a solution for each problem.

Problems

Do the following problems from your book: 13.31, 13.32, 14.13, 14.15, 14.22. Also answer the following:
(1) Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Let E denote the set of all real numbers $r \in \mathbb{R}$ for which there is a subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}$ which converges to r. Show that E if $\left\{s_{n}\right\}$ is a sequence in E which converges to $s \in \mathbb{R}$, then $s \in E .{ }^{1}$
(2) Let E be as in the previous exercise. Define the upper limit and lower limit of $\left\{a_{n}\right\}$ by

$$
\limsup _{n \rightarrow \infty} a_{n}:=\sup E \quad \liminf _{n \rightarrow \infty} a_{n}:=\inf E .
$$

Show the following:
(a) Use the previous exercise to show that $\lim \sup _{n} a_{n}$ is actually the limit of a subsequence of $\left\{a_{n}\right\}$.

[^0](b) Show that if $\lim \sup _{n} a_{n}<x$ then for some $N, a_{n}<x$ for all $n \geq N$. State and prove the analogous statement for lim inf. (Hint: Use Bolzano-Weierstrass.)
(c) the sequence $\left\{a_{n}\right\}$ converges if and only if $\lim \sup _{n} a_{n}=$ $\lim \inf _{n} a_{n}$, in which case the common value is $\lim _{n} a_{n}$. (Hint: Use part (b).)
(d) Calculate the upper and lower limits of the sequence $a_{n}=(-1)^{n}(1+1 / n)$.

[^0]: ${ }^{1}$ One says that E is a closed subset of the real line.

